本章介绍了研究所选文献数据的获取来源和途径。通过Python爬取的方式获取大部分文献数
据与元数据,对元数据进行基本处理,为后续分析提供帮助,丰富向量知识库的数据储备。随后为
了最大程度提高向量知识库的可信程度,对文献数据进行筛选,选出带有流程图,数据,输入输出
的英文文献,作为最后使用的数据。精细筛选后,使用Unstructured库进行数据预处理使其转化
为结构化数据。
向量知识库
向量知识库是一个高效、结构化的数据存储系统,它将各类数据(如文本、图像、音频等)转
化为向量形式进行存储。这种表示方式使得数据之间的相似性和关联性得以量化,从而支持更为精
确和高效的信息检索与数据分析。向量知识库使用特殊的数据结构和索引方法来优化查询效率,可
以快速地查询和计算相似度,支持高效的数据查询。这种表示方式使得向量知识库能够有效支持近
似搜索,即在巨大的数据集中快速找到与查询最为接近的项。同时,向量知识库不受传统关系型数
据库模式的限制,提供了更大的灵活性。它们能够处理多种类型的数据,包括文本、图像、音频和
视频等非结构化数据。这种灵活性使向量知识库成为了人工智能和机器学习应用的理想选择。此
外,外部向量知识库的使用有助于减少模型生成与事实不符内容的“幻觉”问题,增强了输出的可
靠性。然而,整合外部向量知识库也带来了挑战,包括知识库的维护更新、检索效率以及与模型的
兼容性问题。尽管存在这些挑战,外部向量知识库仍然是提升LLM性能的有效途径之一。
在现代信息检索和数据管理系统中,向量知识库扮演了极为关键的角色。通过将文本数据转换
为向量形式,这种库不仅提升了数据的可访问性和处理效率,还为高级分析和机器学习应用提供了
强大的支持。以下详细讨论向量知识库在信息检索和数据管理中的具体优势。
1.提升检索效率和准确性
向量知识库能够显著提高信息检索的效率和准确性。通过将文本转换为数值向量,信息检索可
以从传统的关键字搜索转变为基于向量的语义搜索,这使得搜索结果不再限于关键字的字面匹配,
而是能够捕捉到查询和文档之间的深层语义关系。
例如,一个典型的应用场景中,当用户查询“可再生能源的经济效益”时,即使文档中没有直
接提及这一准确短语,向量知识库也能够返回讨论风能和太阳能成本效益的相关文档,因为这些文
档与查询具有相似的语义向量
2.支持复杂查询
传统的文本检索系统通常只能处理简单的查询,而向量知识库支持复杂的查询处理,包括模糊
匹配和多条件查询。这是因为向量表示能够在多维空间中表达各种语义关系,从而对查询的各个方
面进行解析和响应。例如,对“可再生能源的成本效益”进行查询,使用该语句的向量与向量知识
库中的文献进行匹配,计算相似度,得到相似度最高的两篇文献。继续检索文献的内容,进而对查
询内容进行回答。数据示例如表4.1所示。
3.增强数据互操作性
向量化的数据易于与各种数据处理工具和分析平台集成,增强了不同系统间的数据互操作性。
这使得组织能够将知识向量库作为一个中心资源,在多个部门和应用之间共享和重用数据,从而减', '减')